DATASHEET

Compass Module 3-Axis HMC5883L

The Compass Module 3-Axis HMC5883L is a low-field magnetic sensing device with a digital interface. The compass module converts any magnetic field to a differential voltage output on 3 axes. This voltage shift is the raw digital output value, which can then be used to calculate headings or sense magnetic fields coming from different directions. The module is designed for use with a large variety of microcontrollers with different voltage requirements.

Features

- 3-Axis magneto-resistive sensor
- 1 to 2 degree compass heading accuracy
- Wide magnetic field range (+/-8 gauss)
- Fast 160 Hz maximum output rate
- Precision in-axis sensitivity and linearity
- Measures Earth's magnetic field, from milli-gauss to 8 gauss

Key Specifications

- Power Requirements: 2.7 to 6.5 VDC
- Communication Interface: I²C (up to 400 kHz)
- Operating temperature: -22 to +185 °F (-30 to +85 °C)
- Dimensions: 0.73 x .65 in (1.8 x 1.7 cm)

Application Ideas

- Auto and personal navigation
- UAV systems
- Robotic navigation
- Location-based services (LBS)

Resources and Downloads

Check for the latest version of this document, free software, and example programs from the Compass Module 3-Axis HMC5883L product page. Go to www.parallax.com and search for part number 29133.

Quick-Start Guide

The following is a very basic procedure to get started initializing and reading values from the Compass Module. This module is equipped with 4.7 k Ω pull-up resistors on the SDA line and a 2.2K resistor on the SCL line. There is no need for any external hardware to operate. The schematic is available from the 29133 product page at www.parallax.com.

- 1. With main power off, make the proper connections between the compass module and a microcontroller as shown above. The voltage connected to the VIN pin should be the same as the voltage powering the microcontroller communicating with the device.
- 2. Power on the device and load the BASIC Stamp or Propeller microcontroller sample code provided on the 29133 product page.

Note: For other microcontrollers first, setup the module for continues output mode by writing (0x3C) 0x00 to the MODE register (0x02). Once running in continues mode set a pointer to OUTPUT_X_MSB by writing (0x3C) 0x03 to the device. Now the compass module will output raw data from OUTPUT_X_MSB - OUTPUT_Y_LSB. The compass will automatically index through these registers; there is no need to set pointers for each of these registers. The last step would be to read from each of the six output registers, 8 bits of data per register. For more details on these modes and registers please see the datasheet on the 29133 product page at www.parallax.com.

Precautions

- This module is VERY sensitive to ferrous material, metal objects, magnets and power supplies, etc. Any of these items in close range may affect performance. If you're experiencing adverse results, check your environment for anything that may influence magnetic fields. It is recommended to connect the unit with wires, keeping it away from a breadboard.
- Without tilt compensation the device will need to be level for accurate headings. For tilt compensation, you will need an accelerometer. See the application notes available on the 29133 product page for details on tilt compensation.

Pin	Name	Туре	Function
1	GND	G	Ground
2	VIN	Р	Supply Voltage – 2.7 to 6.5 VDC (module is regulated to 2.5VDC)
3	DRDY	I	Data Ready, interrupt. (internally pulled high, see datasheet for details)
4	SCL	I	I ² C Clock (Pulled high on module, Clock 160Hz Default)
5	SDA	IO	I ² C Data (Pulled high on module)

Pin Descriptions

Module Dimensions

Device Information

The following information is taken from the HMC5883L datasheet

Specifications

Characteristics	Conditions	Min	Тур	Max	Units
Average Current Draw	Idle Mode Measurement Mode	-	2 100	-	μA
Field Range	Full Scale (FS) – Total applied field (Typical)	-8		+8	gauss
Mag Dynamic Range	3-bit gain control	±1		±8	gauss
Resolution	VDD=3.0V, GN=2		5		milli-gauss
Linearity	±2.0 gauss input range			0.1	±% FS
Hysteresis	±2.0 gauss input range		±25		Ppm
Cross-Axis Sensitivity	Test Conditions: Cross field =0.5 gauss, Happlied = ±3 gauss		±0.2%		%FS/gauss
Output Rate (ODR)	Continuous Measurement Mode Single Measurement Mode	0.75		75 160	Hz Hz
Measurement Period	From receiving command to data- ready		6		ms
Turn-on Time	Ready for I ² C commands		200		μs
Gain Tolerance	All gain/dynamic range settings		±5		%
I ² C Address	7-bit address 8-bit read address 8-bit write address		0X1E 0X3D 0X3C		hex hex hex
I ² C Rate	Controlled by I ² C Master			400	kHz
I ² C Hysteresis	Hysteresis of Schmitt trigger inputs on SCL & SDA – Fall (VDDIO=1.8V) Rise (VDDIO=1.8V)		0.2*VDDIO 0.8*VDDIO		Volts Volts

Communication Protocol

The compass module communicates via a two-wire I²C bus system as a slave device. It supports standard and fast modes, 100 kHz and 400 kHz, but does not support a high-speed mode. No external pull-up resistors are required to support these standard and fast speed modes (4.7 k Ω pull-up resistors are built into module). *See page 8 in the datasheet for I²C communication details.

Modes of Operation

The Compass Module has several modes that can be accessed from the I²C bus, whose primary purpose is power management. All the modes are controlled by the Mode Register. The following section describing modes, was taken from the Honeywell HMC5883L datasheet. *See page 9 in the datasheet for more details.

Continuous-Measurement Mode

During continuous-measurement mode, the device continuously makes measurements, at user selectable rate, and places measured data in data output registers. All registers maintain values while in continuous-measurement mode and I²C bus is enabled for use by other devices on the network.

Single-Measurement Mode

This is the default power-up mode. During single-measurement mode, the device makes a single measurement and places the measured data in data output registers. All registers maintain values while in single-measurement mode. The I²C bus is enabled for use by other devices on the network while in single-measurement mode.

Idle Mode

During this mode the device is accessible through the I²C bus, but major sources of power consumption are disabled, such as, but not limited to, the ADC, the amplifier, and the sensor bias current. All registers maintain values while in idle mode. The I²C bus is enabled for use by other devices on the network while in idle mode.

Register List

This device is controlled and configured via a number of on-chip registers, The table below lists the registers and their access. All address locations are 8 bits. For a detailed description of these registers please access the datasheet on our Product Page.

Address Location	Register Name	Access	
00	Configuration A	Read/Write	
01	Configuration B	Read/Write	
02	Mode	Read/Write	
03	Data Output X MSB	Read	
04	Data Output X LSB	Read	
05	Data Output Z MSB	Read	
06	Data Output Z LSB	Read	
07	Data Output Y MSB	Read	
08	Data Output Y LSB	Read	
09	Status	Read	
10	Identification A	Read	
11	Identification B	Read	
12	Identification C	Read	